INIMINE und DIINIMINE

Gerhard Himbert^{*} und Dieter Faul

Fachbereich Chemie der Universität, Postfach 3049, D-6750 Kaiserslautern

Summary Perchlorobutenyne 1 react with the methaneimines $\frac{2}{2}$ to give the N-alkylideneynamines $\frac{3}{2}$. The trichlorovinyl group of $\frac{3}{2}$ is transformed by butyllithium and a chlorosilane into a silylethinyl moiety (see $\frac{3}{2} \rightarrow \frac{4}{2}$). Some Cycloadditions of $\frac{3}{2}$ and $\frac{4}{2}$ are described.

Das direkt am Acetylenteil gebundene Chloratom des Perchlorbutenins <u>1</u> läßt sich nukleophil leicht durch Amine und Lithiumamide, aber auch durch Lithium(aminoacetylide) substituieren ¹⁻⁷⁾. Die dabei erhaltenen Trichlorvinyl-oligoin-Derivate stellen die Edukte für die Synthese von Butadiin-, Hexatriin- und Octatetrain-<u>mono</u>aminen und -<u>dia</u>minen dar ²⁻⁷⁾. Wir setzten nun <u>1</u> mit den am Stickstoff unsubstituierten Iminen <u>2a</u> und <u>2b</u> um und erhielten das 2-(Trichlor-3-buten-1-inyl)guanidin <u>3a</u> (24 %) und das entsprechend substituierte Imin <u>3b</u> (46 %) ⁸⁾. Ersteres konnten wir mittels Butyllithium und Chlormethyldiphenylsilan in das (4-Silyl-1-butadiinyl)guanidin-Derivat <u>4</u> umwandeln.

Die umgekehrte Strategie zur Verknüpfung von Iminstickstoff mit Acetylenen ist 1987 von Würthwein und Weigmann bei der ersten Synthese von Iniminen benutzt worden: Umsetzung von Alkinylcupraten (Alkin-Nukleophile) mit den Oximestern von Arensulfonsäuren (Imin-Elektrophile)⁹.

2,3 a : R=NMe, b:R=Ph

5355

Die Konstitution der Inimin-Derivate $\frac{3}{2}$ und $\frac{4}{2}$ ist durch die Existenz von Absorptionen des Acetylen- und des Azomethin-Teils in den IR- und ¹³C-NMR-Spektren belegt (s. Tabelle).

<u>3/4</u>	Isol.Ausb. Farbe/Schmp.	IR(KBr bzw. Film) C≘C/C=N [cm ⁻¹]	¹ H-NMR (CDC1 ₃ ; δ	¹³ C-NMR -Werte)
3a ==	24% a)	2155 s,br/ (1655 s)b) 1590 s 1520 vs	2.97 (s,NMe ₂)	39.67 (q, 138.2 Hz, NMe) 61.26 (s, C-2) 105.99 (s, C-1) 115.37 (s, C-3) 117.09 (s, C-4) 163.57 (s,-N=C≺)
3b ≞≞	46% gelborange/ 180-181°C	2138 s/ 1594 Sh 1582 vs 1572 s 1516 s	7.3-7.9 (m,Aryl-H)	87.17 (s, C-2) 99.89 (s, C-1) 114.09 (s, C-3) 125.10 (s, C-4) 179.69 (s,-N=C≼) c)
<u>4</u>	25% gelbes Rohöl	2160 vs/ 1540 vs,br	0.68 (s,SiMe) 2.77 (s,NMe ₂) 7.2-7.8 (m, Aryl-H)	39.99 (q, 137.7 Hz, NMe) 51.44, 78.94, 82.54, 95.45 (4s, Acetylen-C), 165.40 (s, -N=C<) d)

Tabelle: Präparative und spektroskopische Daten der N-Alkyliden-Inamine 3 und 4

a) Aus Ether farblose bis blaßgelbe Kristalle, die sich bei Raumtemp. zersetzen; sie sind jedoch einige Zeit bei -10° C stabil.-^{b)} Absorption eines Hydrolyseproduktes? c) Mehrere, oft verbreiterte Signale zwischen $\delta = 127-137$ ppm für Aryl-<u>C</u>.-

d) 136.33(s), 134.56, 129.51, 127.93(3d); Signale der Aryl-C-Atome.

Um vorläufige Aussagen über die Reaktivität machen zu können und um einen ersten Eindruck von dem "Elektronenreichtum" der das Imin-Stickstoffatom-tragenden Dreifachbindung zu gewinnen, setzten wir unsere Inimine $\underline{3}$ mit einigen Reagenzien um, deren hohe Reaktionsbereitschaft gegenüber Inaminen bekannt ist ¹⁰: Während das Guanidin-Derivat $\underline{3a}$ fast wie ein "normales" Inamin bereitwillig mit den elektrophilen Olefinen $\underline{5a}$, bund cund mit dem Nitriloxid $\underline{8}$ reagierte und dabei die Butadien-Derivate ¹¹) $\underline{7a}$ und $\underline{7b}$ $\underline{12}$, das Cyclobuten $\underline{6c}$ $\underline{13}$) bzw. das Isoxazol $\underline{9}$ ¹⁴) lieferte, ließ sich das Diphenylmethylen-Derivat $\underline{3b}$ bisher nur mit dem sehr reaktiven Bis(phenylsulfonyl)ethylen $\underline{5c}$ umsetzen, wobei das (2+2)-Cycloaddukt $\underline{15}$) $\underline{6d}$ erhalten wurde.

Umsetzungen Produkt	R ¹	R ²	R ³	Accb)
$\begin{array}{c}3\underline{a} + 5\underline{a} & \longrightarrow & \boxed{6\underline{a}} & \longrightarrow & 7\underline{a}\\3\underline{a} + 5\underline{b} & \longrightarrow & \boxed{6\underline{b}} & \longrightarrow & 7\underline{b}\\3\underline{a} + 5\underline{c} & \longrightarrow & 6\underline{c}\\3\underline{b} + 5\underline{c} & \longrightarrow & 6\underline{d}\\\end{array}$	NMe ₂ NMe ₂ NMe ₂ Ph	-CC1=CC1 ₂ -CC1=CC1 ₂ -CC1=CC1 ₂ -CC1=CC1 ₂	Ph Ph H H	CN SO ₂ Ph SO ₂ Ph SO ₂ Ph
$\underbrace{4}_{\underline{2}} + \underbrace{5c}_{\underline{2}} \longrightarrow \underbrace{6e}_{\underline{2}}^{a}$	NMe2	-C≡C-SiMePh ₂	Н	S02Ph

a) Daneben wurde das Diaddukt $\underline{6}$ isoliert; s. Text und Lit. 17).

b) Acc = Acceptorgruppe

Die hier beschriebene Umsetzung des bisher nur als Rohöl erhaltenen Diinimins $\frac{4}{2}$ mit $\frac{5c}{2}$ diente nicht so sehr der Reaktivitätsuntersuchung als vielmehr der chemischen Charakterisierung. Sie lieferte das kristalline Monoaddukt $\frac{6}{2}$ (10%) $^{16)}$ und das kristalline Diaddukt $\frac{6}{2}$ (20%) $^{17)}$, bei dem beide Dreifachbindungen von $\frac{4}{2}$ jeweils ein Molekül $\frac{5c}{2}$ addiert haben.

Danksagung

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für finanzielle Hilfe und Frau S. Müller für ihre engagierte Mitarbeit im Rahmen eines studentischen Fortgeschrittenenpraktikums.

Fußnoten

- 1) A. Roedig, M. Fouré, Chem. Ber. 109 (1976) 2159.
- G. Himbert, M. Feustel, Angew. Chem. <u>94</u>(1982)289; Angew. Chem., Int. Ed. Engl. <u>21</u>(1982) 282.
- 3) M. Feustel, G. Himbert, Liebigs Ann. Chem. 1984, 586.
- M. Feustel, G. Himbert, Tetrahedron Lett. <u>1983</u>, 2165.
- 5) D. Faul, G. Himbert, Liebigs Ann. Chem. 1986, 1466.
- 6) D. Faul, E. Leber, G. Himbert, Synthesis 1987, 73.
- 7) D. Faul, G. Himbert, Chem. Ber. <u>121</u>(1988), im Druck.
- 8) Prinzipiell lassen sich auch N-Silylimine zur Synthese von $\underline{3}$ einsetzen: z. B. $\underline{1} + \underline{2}\underline{b}$ (SiMe₃ statt H) $\rightarrow \underline{3}\underline{b}$ (24 %); Zusatz von Bu₄N⁺ F erforderlich.
- 9) E.-U. Würthwein, R. Weigmann, Angew. Chem. 99(1987)918; Angew. Chem., Int.Ed. Engl. 26(1987)983.
- 10) s. z. B.: G. Himbert, W. Brunn, Chem. Ber. <u>117</u>(1984)642 und G. Himbert, S. Kosack, Chem. Ber. <u>121</u>(1988), im Druck.
- 11) <u>7a</u>: 53 % Ausb, aus Ether/Pentan rostfarbene Kristalle mit Schmp. 112-113 ^OC IR(KBr): 2208s, 2188s (C=N), 1570vs, 1510vs,br (C=N)cm⁻¹. - ¹H-NMR(CDC1₃) : δ = 2.97 (s, 12 H, NMe₂), 7.37 (mc, 6H, Aryl-H Vinyl-H) cm⁻¹.
- 12) <u>7b</u>: 58 % Ausb., aus Dichlormethan/Ether blaßgelbe Kristalle mit Zers.-P. 203-204 ^OC. -IR(KBr): 1554s,br, 1525vs (C=N) cm⁻¹. - ¹H-NMR(CDC1₃) : δ = 2.82 (s. 12 H, NMe₂), 6.97 (s, 1H, Vinyl-H), 7.2-7.5, 7.9-8.1 (2m, 11 H bzw. 4H, Aryl-H).
- 13) <u>6c</u>: 95 % Ausb., aus Ether hellbeige Kristalle mit_Zers_-P. 173-174 ^OC. IR(KBr): I598m, 1582s, 1560m, 1535Sh, 1516vs (C=C/C=N) cm⁻¹. ¹H-NMR(CDCl₃) : δ = 2.82 (s, 12H, NMe₂), 3.20 (**s**,2H, Ring-CH₂). ¹³C-NMR(CDCl₃) : δ = 33.19 (t, \downarrow = 146.9 Hz, Ring CH₂).
- 14) 9: 12 % Ausb., aus Dichlormethan/Ether beigefarbene Kristalle mit Schmp. 154-155 ^OC. -IR(KBr): 1595m, 1560Sh, 1550-1510vs,vbr (C=C/C=N/NO₂) cm⁻¹. - H-NMR(CDC1₃) : δ = 2.97 (s, NMe₂), 7.86, 8.39 (AB-Signal, je 2H, J≈8 Hz.).
- 15) <u>6d</u>: 54 $\frac{\pi}{2}$ Ausb.- aus Ether gelbe Krista]le mit Schmp. 180-181 ^OC. IR(KBr): 1598m, 1580s, 1565s, 1540s (C=C/C=N) cm⁻¹. - ¹H-NMR(CDC1₃) : δ = 3.21 (s, 2H, Ring CH₂), 7.3-7.7 (m, 16 H), 8.0-8.2 (m, 4H).
- 16) 6e: 10 % Ausb., aus Dichlormethan/Ether hellbeige Kristalle mit Zers.-P. 121-122 ^OC. -IR(KBr): 2120m(C≡C), 1586s, br, 1517vs,br (C=C/C=N) cm⁻¹. - ¹H-MMR(CDCl₂): δ = 0.61 (s,3H, SiMe), 2.78 (s,12H,NMe₂), 3.02 (s, 2H, Ring-CH₂), 7.2-7.7, 8.0-8.2 (2m, 16 bzw. 4H).
- 17) 6f: 20 % Ausb., aus Dichlormethan/Ether farblose Kristalle mit Schmp. 135-136 ⁰C. -IR(KBr): 1600s, 1576m, 1565m, 1518s,br (C=C/C=N) cm⁻¹. - ¹H-NMR(CDC13) : δ = 0.77 (s, 3H, SiMe), 2.63 (s, 12H,NMe₂), 2.54, 3.40 (2s, je 2H, 2 Ring CH₂), 6.9-7.8, 7.9-8.1 (2m, 22 bzw. 8H). - Wir vermuten, daß das zweite Olefin-Molékül mit gleicher Orientierung an die zweite Dreifachbindung addiert wie das erste an die erste Dreifachbindung (s. 60).

(Received in Germany 4 July 1988)